terça-feira, 12 de julho de 2011

Pra que Serve Fisica Quântica


Pra que Serve  Fisica Quântica


Já faz cem anos que Planck teve de lançar mão de uma expressão inusitada para explicar os seus resultados da medida da intensidade da radiação emitida por um radiador ideal – o corpo negro – levando-o assim a estabelecer o valor de uma nova constante universal que ficou conhecida como a constante de Planck. A partir daí, e também em função de outras experiências que apresentavam resultados igualmente surpreendentes no contexto da mecânica de Newton e do eletromagnetismo de Maxwell, os pesquisadores do começo do século passado se viram obrigados a formular hipóteses revolucionárias que culminaram com a elaboração de uma nova física capaz de descrever os estranhos fenômenos que ocorriam na escala atômica; a mecânica quântica. Um sistema quântico, ao contrário do clássico, só pode ser descrito através das possíveis alternativas (não necessariamente apenas duas) que a nossa montagem apresente para ele.
A onda associada ao sistema carrega a possibilidade de interferência entre as diferentes alternativas e é a informação máxima que podemos ter sobre o sistema em questão. A aplicação desta teoria a problemas nas escalas atômicas e sub-atômicas apresenta resultados como a quantização da energia ou o tunelamento quântico que, por si só, já mereceriam a elaboração de um outro artigo para que o leitor pudesse apreciá-los.O mais interessante é que a mecânica quântica descreve, com sucesso, o comportamento da matéria desde altíssimas energias (física das partículas elementares) até a escala de energia das reações químicas ou, ainda de sistemas biológicos. O comportamento termodinâmico dos corpos macroscópicos, em determinadas condições, requer também o uso da mecânica quântica. A questão que nos resta é então; por quê não observamos estes fenômenos no nosso cotidiano, ou seja, com objetos macroscópicos?  Bem, há duas razões para isso.
A primeira é que a constante de Planck é extremamente pequena comparada com as grandezas macroscópicas que têm a sua mesma dimensão. Baseados neste fato, podemos inferir que os efeitos devidos ao seu valor não nulo, ficarão cada vez mais imperceptíveis à medida que aumentamos o tamanho dos sistemas. Em segundo lugar, há o chamado efeito de descoerência. Este efeito só recentemente começou a ser estudado e trata do fato de não podermos separar um corpo macroscópico do meio onde ele se encontra. Assim, o meio terá uma influência decisiva na dinâmica do sistema fazendo com que as condições necessárias para a manutenção dos efeitos quânticos desapareçam em uma escala de tempo extremamente curta.Entretanto, as novas tecnologias de manipulação dos sistemas físicos nas escalas micro ou até mesmo nanoscópicas nos permitem fabricar dispositivos que apresentam efeitos quânticos envolvendo, coletivamente, um enorme número de partículas.
Nestes sistemas a descoerência, apesar de ainda existir, tem a sua influência um pouco reduzida, o que nos permite observar os efeitos quânticos durante algum tempo. Uma aplicação importante para alguns destes dispositivos seria a construção de processadores quânticos, o que tornaria os nossos computadores ainda mais rápidos. Nesta situação a minimização dos efeitos da descoerência é altamente desejável pois, em caso contrário, estes processadores de nada iriam diferir dos processadores clássicos.Como podemos ver, tudo indica que a mecânica quântica seja a teoria correta para descrever os fenômenos físicos em qualquer escala de energia. O universo macroscópico só seria um caso particular para o qual há uma forma mais eficiente de descrição; a mecânica newtoniana. Esta pode ser obtida como um caso particular da mecânica quântica mas a recíproca não é verdadeira.
Muitos autores, por não se sentirem confortáveis com a chamada interpretação ortodoxa ou de Copenhagen da mecânica quântica, tentam criar teorias alternativas para substituí-la. Entretanto, cabe notar que, apesar da sua estranheza, a mecânica quântica não apresentou qualquer falha desde que foi elaborada na década de 20, o que não nos proporciona evidência experimental que aponte para onde buscar as questões capazes de derrubá-la.

Nenhum comentário:

Seguidores