quinta-feira, 13 de setembro de 2012

A Geometria Sagrada


A Albertus Argentinus, inventor do ad quadratum.



"Cada molécula de todo o universo traz gravada sobre ela a impressão de um sistema métrico, como o fazem nitidamente o metro dos Arquivos de Paris ou o côvado real duplo do Templo de Kamak.” Sir William Herschel.
Gostaria de agradecer às seguintes pessoas por sua variada colaboração: Major Bernard HaswelI, de Westward Hol; Prudence Jones, de Cambridge; Martyn Everett, de Saffron Walden, e Michael Behrend, de Epsom.
Introdução
"O homem é a medida de todas as coisas, dos seres vivos que existem e das não-entidades que não existem.“ Protágoras (c. 481.411 a.C.)
A geometria existe por toda parte na natureza: a sua ordem subjaz à estrutura de todas as coisas, das moléculas às galáxias, do menor vírus à maior baleia. Apesar do nosso distanciamento do mundo natural, nós, os seres humanos, ainda estamos amarrados às leis. naturais do universo. Os artefatos singulares planejados conscientemente pela humanidade também têm sido baseados, desde os tempos mais antigos, em sistema de geometria. Esses sistemas, embora derivem inicialmente de formas naturais, freqüentemente as ultrapassaram em complexidade e engenhosidade e foram dotados de poderes mágicos e de profundo significado psicológico. A geometria - termo que significa "a medição da terra" talvez tenha sido uma das primeiras manifestações da civilização em seu nasce douro. Instrumento fundamental que subjaz a tudo o que é feito pelas mãos humanas, a geometria desenvolveu-se de uma habilidade primitiva - a manipulação da medida, que nos tempos antigos era considerada um ramo da magia. Naquele período antigo, a magia, a ciência e a religião eram de fato inseparáveis, faziam parte do conjunto de habilidades possuídas pelo sacerdócio. As religiões mais remotas da humanidade estavam concentradas naqueles lugares naturais em que a qualidade numinosa da terra podia ser plais prontamente sentida: entre árvores, rochas, fontes, em cavernas e lugares elevados. A função do sacerdócio que se desenvolveu ao redor desses sítios de santidade natural foi a princípio interpretativa. Os sacerdotes e as sacerdotisas eram os especialistas que podiam ler o significado em augúrios e oráculos, tempestades, ventos, terremotos e outras manifestações das energias do universo. As artes do xamanismo que os sacerdotes mais antigos praticavam permitiram, com uma sofisticação cada vez maior, um sacerdócio ritual estabelecido que exigiu símbolos externos de fé. Os penedos não desbastados e as árvores isoladas não mais se constituíam nos únicos requisitos para um local de adoração. Construíram-se compartimentos, que foram demarcados como lugares santos especiais separados do mundo profano. No ritual exigido pelo novo plano, a geometria tornou-se inseparavelmente ligada à atividade religiosa. A harmonia inerente à geometria foi logo reconhecida como a expressão mais convincente de um plano divino que subjaz ao mundo, um padrão metafísico que determina o padrão físico. Esta realidade interior, que transcende a forma exterior, continuou a ser ao longo de toda a história a base das estruturas sagradas. Por essa razão é tão válido construir hoje um edifício moderno de acordo com os princípios da geometria sagrada quanto o era no passado em estilos tais como o egípcio, o clássico, o românico, o islâmico, o gótico, o renascentista ou o Art Nouveau. A proporção e a harmonia seguem naturalmente o exercício da geometria sagrada, que parece correta porque ela é correta, ligada como está metafisicamente à estrutura esotérica da matéria. A geometria sagrada está inextricavelmente ligada a vários princípios místicos. Talvez o mais importante deles seja aquele que se atribui ao fundador da alquimia, Hermes Trismegisto, o Três Vezes Grande Heimes. Esta máxima é o fundamental. "Acima, como abaixo" ou "O que está no mundo menor (microcosmo) reflete o que está no mundo maior ou universo (macrocosmo)". Essa teoria da correspondência subjaz a toda a astrologia e também a grande parte da alquimia, da geomancia e da magia, no sentido de que a forma da criação universal está refletida no corpo e na constituição do homem. O homem, por sua vez, na concepção hebraica, foi criado à imagem de Deus - o templo que o Criador estabeleceu para hospedar o espírito que eleva o homem para cima do reino animal. Assim, a geometria sagrada diz respeito não só às. proporções das figuras geométricas obtidas segundo a maneira clássica com o uso da régua e compassos, mas também às relações harmônicas das partes de um ser humano com um outro; à estrutura das plantas e dos animais; às formas dos cristais e dos objetos naturais - a tudo aquilo que for manifestações do continuum universal.
1. Os Princípios da Geometria Sagrada
Os princípios que norteiam disciplinas tais como a geomancia, a geometria sagrada, a magia ou a eletrônica estão fundamentalmente ligados à natureza do universo. Dogmas variáveis de diferentes religiões ou mesmo de grupos políticos podem ditar variações de forma externa, mas os fundamentos operatórios permanecem constantes. Pode-se fazer uma analogia com a eletricidade. Para que uma lâmpada elétrica se ilumine é preciso que várias condições sejam preenchidas. Uma determinada corrente deve alimentar a lâmpada por meio de condutores isolados com um circuito completo, etc. Essas condições não são negociáveis. Se algo não estiver correto, a lâmpada não se acenderá. Os técnicos de todo o mundo devem conhecer os princípios fundamentais, caso contrário falharão. Esses princípios transcendem as considerações políticas ou sectárias. Executado acertadamente, o circuito funcionará igualmente bem num estado comunista, sob uma ditadura militar ou num país democrático - até mesmo em outro planeta. Da mesma maneira, os princípios norteadores da geometria sagrada transcendem as considerações religiosas sectárias. Como uma tecnologia que tem o objetivo de reintegrar a humanidade no todo cósmico, ela funcionará, como a eletricidade, para todas as pessoas que observarem os critérios, não importa quais sejam os seus princípios ou propósitos. A aplicação universal dos princípios idênticos da geometria sagrada em lugares separados no tempo, no espaço e por crençàs diferentes atesta a sua natureza transcendental. Assim, a geometria sagrada foi aplicada nos templos pagãos do Sol, nos relicários de Ísis, nos tabernáculos de Jeová, nos santuários de Marduk, nos santuários erigidos em honra dos santos cristãos, nas mesquitas islâmicas e nos mausoléus reais e sagrados. Em todos os casos, uma cadeia de princípios imutáveis conecta essas estruturas sagradas. A geometria é geralmente incluída na disciplina da matemática; todavia, a matemática numérica, na verdade, derivou da geometria, que possui uma ordem muito mais fundamental do que a mera manipulação de números, que é criação do homem.
Nos nossos dias, as razões geométricas são invariavelmente expressas em termos matemáticos e parece impensável que a geometria pudesse ser separada da matemática. Todavia, a expressão matemática de razões tais como o pi e a seção dourada é apenas uma convenção engendrada para uma civilização letrada adestrada em figuras e em cálculo. Dizendo respeito em primeiro lugar às razões e às relações, a expressão da geometria em termos de números pertence a um período posterior do seu desenvolvimento. A complexa geometria do Egito antigo, que habilitou arquitetos e geômetras a medir o tamanho exato do país, estabelecer indicadores geodésicos e erigir vastas estruturas como as pirâmides, era uma arte prática que implicava no seu relacionamento com o número. Os geômetras gregos, cujo conhecimento eles próprios admitiam provir dos egípcios, continuaram no nível prático e não se aventuraram nos reinos da matemática complexa que só existe para provar aquilo que já se conhece. De fato, foi só no século XVII, com a ascensão do culto particularmente europeu protestante à ciência, que o cálculo preciso dos números irracionais tornou-se uma preocupação urgente. A interpretação da geometria em termos de relações numéricas é uma racionalização intelectual posterior de um sistema natural para a divisão do espaço. Tal interpretação surgiu com o divórcio entre a geometria e o corpus de ciência, magia e metafísica que agora se conhece peto nome de religião antiga. Muitas razões de comprimento, como por exemplo as raízes quadradas da maioria dos números inteiros, não podem ser expressas em termos de números inteiros e; assim, só podem ser apropriadamente descritas em termos geométricos. Da mesma maneira, a divisão do círculo em 360 unidades conhecidas como graus no sistema babilônico convencional não é absoluta. Embora seja geometricamente derivada, é apenas uma questão de conveniência. O número, todavia, tal como expresso nas dimensões sagradas dos edifícios santificados, tem sido freqüentemente usado para camuflar a sua geometria sagrada subjacente. O Tabernáculo Hebraico e o Templo âescrito na Bíblia, e também as dimensões da Capela do King's College, em Cambridge, são tidos como medições que podem ser interpretadas pelos cognoscenti em termos de geometria mística. O rei Henrique VI só poderia conceber a forma da sua Capela em Cambridge em termos de medidas que não divulgassem os mistérios maçônicos aos não-iniciados. Reginald Ely, seu mestre maçom, teve de desenhar as dimensões como um plano que determinasse a geometria ad triangulum inerente àquelas dimensões. Por ser a geometria uma imagem da estrutura do cosmos, ela pode ser facilmente utilizada como um sistema simbólico para a compreensão de várias estruturas do universo. Essa função simbólica é exemplificada por um instrumento científico pouco conhecido que foi usado nos tempos pré-coloniais para ensinar aos meninos polinésios os fundamentos da navegação. Embora os polinésios não tenham possuído nenhum dos instrumentos agora tidos como necessários à navegação - o sextante, o compasso e o cronômetro -, eles eram capazes de viajar regularmente através de grandes extensões do oceano e chegar aos seus objetivos. Valendo-se das estrelas e de outras características físicas - como a presença de bancos de nuvem sobre a terra -, os navegadores polinésios podiam detectar a presença de ilhas, mas o método mais útil era a leitura das ondas. Assim como qualquer outro objeto marítimo, uma rocha por exemplo, exercerá um efeito sobre o padrão das ondulações, também a presença de uma ilha, em escala muito maior, causará padrões de difração nas ondas a muitas milhas de distância. A ciência do reconhecimento das ondas era ensinada aos meninos por meio de um sistema mnemônico, o mattang. Em sua forma característica, esse instrumento, composto de varetas dispostas num padrão geométrico preciso, apresentava estranham ente algumas das idéias da geometria sagrada européia. Esse dispositivo geométrico mostrava aos discípulos todos os padrões básicos que as ondas formam quando são dobradas pela terra. Da mesma maneira, todos os padrões geométricos refletem, além disso, verdades que estão muito além das suas simples derivações, mesmo os complexos relacionamentos com outras geometrias. A estrutura deles está em harmonia com o universo e com todas as formas físicas, estruturais e psicológicas que constituem a sua unicidade.
Desde os tempos mais antigos, a geometria foi inseparável da magia. Mesmo os riscadores-de pedra mais arcaicos têm forma geométrica. Eles apontam para um sistema notacional e invocacional praticado por algum antigo sacerdócio. Pelo fato de as complexidades e as verdades abstratas expressas pela forma geométrica só poderem ser explicadas como reflexos das verdades mais íntimas da substância do mundo, elas eram consideradas como mistérios sagrados da ordem mais elevada e eram ocultadas dos olhos profanos. Um conhecimento especial era exigido para se desenhar tais figuras e a sua importância mística era ignorada pelas massas sem instrução. Os conceitos complexos eram transmitidos de um iniciado a outro por meio de símbolos geométricos individuais, ou combinações deles, sem que o ignorante nem ao menos suspeitasse de que estava ocorrendo uma comunicação. Como o sistema moderno de símbolos secretos empregado pelos ciganos, eles deveriam constituir-se em enigmas embaraçosos para o curioso.
Toda forma geométrica está investida de significado psicológico e simbólico. Assim, tudo aquilo que é feito pelas mãos do homem e que incorpora esses símbolos de uma maneira ou de outra torna-se um veículo para as idéias e as concepções corporificadas em sua geometria. Através dos tempos, as geometrias simbólicas complexas agiram como a base para a arquitetura sagrada e profana, variando a geometria de acordo com a função. Algumas geometrias continuam sendo ainda hoje poderosas imagens arquetípicas da fé: logo acorre à nossa mente, com símbolo do judaísmo, o hexagrama. Outras geometrias foram menos conhecidas pelo público, sendo usadas para indicar àqueles que "estavam a par" alguma verdade esotérica, como o vesica piscis do tampo da Fonte Chalice em Glastonbury. Outras, todavia, estão ocultas nas profundezas dos artefatos místicos - ou até mesmo nas brincadeiras das crianças. Uma brincadeira bastante comum entre escolares é uma reminiscência de um antigo sistema de geometria sagrada. Conhecido como "ler a sorte", o jogo envolve a dobradura de um quadrado de papel de uma determinada maneira. De qualquer jeito que o abrirmos, sempre se nos revelará uma de quatro opções. A dobradura do papel e a forma que ele toma quando desdobrado são um dispositivo mnemônico para a criação da geometria ad quadratum usada pelos antigos maçons. Toma-se um quadrado de papel e dobram-se os quatro cantos de maneira que eles se encontrem. Este procedimento produz um novo quadrado, cuja área corresponde à metade do quadrado original. Estes cantos - são novamente dobrados de dentro para fora, o que cria um outro quadrado correspondente à metade do anterior e produz uma divisão óctupla. Pode-se fazer, a partir daí, uma figura tridimensional, com dois grupos de "vértices" que podem ser abertos e fechados à vontade. A associação dessa geometria muito bem definida com a leitura da sorte pode ser perfeitamente o resíduo deteriorado de um antigo sistema de adivinhação, pois o padrão assim formado não só reproduz a configuração básica do ad quadratum, mas também o esboço tradicional do desenho do horóscopo. Este último padrão combina de maneira engenhosa a divisão óctupla pagã do quadrado com a divisão duodécupla oriental do zodíaco.
O uso de formas geométricas é bastante conhecido na magia ritual, tanto para a evocação de espíritos e poderes quanto para a proteção do mágico contra suas cortesias malévolas. Cada espírito tem tradicionalmente um sigilo ou padrão geométrico associado ao seu nome, por meio do qual, com conjuras e rituais apropriados, ele pode ser contactado. Muitos desses sigilos são expressões geométricas dos nomes e são produzidos pelo traçado de números equivalentes às letras sobre. quadrados mágicos. A determinação dos números equivalentes aos nomes é conhecida como gematria. Nos alfabetos grego e hebraico, cada um dos caracteres representa não só um som, mas também um equivalente numérico. Assim, o nome Israel poderia ser escrito em hebraico da seguinte maneira: Yod Shin Resh Aleph Lamed. Esses caracteres têm o equivalente numérico 10, 300, 200, 1, 30 = 541. Uma convenção da gematria permite, assim, que outras palavras de valor numérico equivalente possam ser usadas como seus substitutos. Os cabalistas, durante muitos séculos, estudaram o significado oculto do livro de Isaías segundo esses critérios. A substituição de uma palavra por outra pode ser usada como um método oculto de comunicação que elimina a necessidade de se usar um nome que tenha poderes especiais próprios. Também é possível traçar esquemas a partir das posições ocupadas pelos números nos quadrados mágicos. Assim, o nosso exemplo, Israel, esquematizado sobre o Quadrado Mágico do Sol, cria um sigilo específico que pode ser depois transferido para os utensílios mágicos, etc. (ver Figura 4).
Onde quer que a geometria tenha sido usada, consciente ou inconscientemente, o seu simbolismo ainda se faz presente. Através de todo o universo conhecido, a função da sua geometria é um valor imutável da existência transitória. Os artistas e os mágicos reconheceram essa qualidade transcendental e, em conseqüência, constituíram a base imutável sobre a qual está apoiado o tecido da cultura. Através de toda a história registrada, o geômetra trabalhou silenciosamente em sua arte, fornecendo a matriz interna sobre a qual se baseiam as formas externas.
2. As Formas
São muito poucas as formas geométricas básicas das quais se compõe toda a diversidade da estrutura do universo. Cada uma delas é dotada de propriedades únicas e detém um simbolismo esotérico que permaneceu imutável ao longo da história humana. Todas essas formas geométricas básicas podem ser facilmente produzidas por meio dos dois instrumentos que os geõmetras têm usado desde a aurora da história - a régua e o compasso. Figuras universais, sua construção não exige a utilização de nenhuma medição; ocorrem em todas as formações naturais, nos reinos orgânico e inorgânico.
O círculo
Talvez o círculo tenha sido o símbolo mais antigo desenhado pela raça humana. Simples de ser executado, é uma forma cotidiana encontradiça na natureza, vista nos céus como os discos do sol e da lua, e ocorre nas formas das plantas e dos animais e nas estruturas geológicas naturais. Nos tempos antigos, as construções, fossem elas temporárias ou permanentes, eram circulares em sua grande maioria. Os nativos americanos tipi e os yurt mongólicos atuais são sobreviventes de uma antiga forma universal. Dos círculos de cabanas da Grã-Bretanha neolítica, desde, os círculos de pedra megalíticos até as igrejas e os templos redondos, a forma circular imitou a redondeza do horizonte visível, fazendo de cada construção, na verdade, um pequeno mundo em si mesmo. O círculo representa o completamento e a totalidade, e as estruturas redondas ecoam peculiarmente esse princípio. No Rosarium Philosophorum, um antigo tratado aIquímico, lemos a seguinte afirmação:
"Faze um círculo ao redor do homem e da mulher e desenha fora dele um quadrado e fora do quadrado um triângulo. Faze um círculo ao redor dele e terás a pedra dos filósofos.”
O círculo contém aí a imagem do homem, como no famoso desenho virtuoso de Leonardo da Vinci. Com base nesta figura fundamental, pode-se produzir o quadrado e, depois, as outras figuras geométricas. A pedra dos filósofos, a súmula de todas as coisas e a chave para o conhecimento, é produzida dessa maneira e representada pelo círculo, a figura matriz de que podem ser geradas todas as outras figuras geométricas. Com régua e compasso, todas as figuras importantes eram produzidas simples e elegantemente. Essas figuras - o vesica piscis, o triângulo eqüilátero, o quadrado, o hexágono e o pentágono -, todas elas mantêm relações diretas umas com as outras.
O quadrado
Os templos antigos eram freqüentemente construídos em forma quadrilátera. Representando o microcosmo e, em conseqüência, considerada como um emblema da estabilidade do mundo, essa característica era especialmente verdadeira para as representações artificiais de montanhas que reproduziam o mundo, para os zigurates, as pirâmides e as estupas. Essas estruturas simbolizavam o ponto de transição entre o céu e a terra e centralizavam idealmente o omphalos, o ponto axial do centro do mundo. Geometricamente, o quadrado é uma figura única. Pode ser dividido com precisão por dois e por múltiplos de dois apenas com um esboço. Também pode ser dividido em quatro quadrados quando se faz uma cruz que define automaticamente o centro exato do quadrado. O quadrado, orientado para os quatro pontos cardeais (no caso das pirâmides egípcias, com um exatidão fenomenal), pode ser novamente bisseccionado por diagonais, que o dividem em oito triângulos. Essas oito linhas, partindo do centro, formam os eixos que indicam as quatro direções cardeais e os "quatro cantos" do mundo - a divisão óctupla do espaço. Essa divisão óctupla do espaço é venerada no "caminho óctupIo" da religião budista e nas "Quatro Estradas Reais da Grã-Bretanha" relatadas minuciosamente na History of the Kings of Britain, de Geoffrey of Monmouth. Cada uma das direções, no Tibete, estava sob a guarda simbólica hereditária de uma família, tradição que encontrou paralelo na Grã-Bretanha nas oito Famílias Nobres que sobreviveram à Cristianização e produziram os reis e os santos da Igreja Celta. A divisão óctupla do quadrado era; na tradição européia, um emblema da divisão do dia e do ano, bem como da divisão do país e da sociedade. Embora a divisão óctupla do tempo fosse gradualmente eliminada com o advento do sistema duodécuplo dos cristãos, ela sobreviveu nos antigos quarterdays [primeiro dia de um trimestre] do calendário, nas tradicionais festas do fogo nos países pagãos e na geometria maçônica da arquitetura sagrada do sistema acht uhr ou ad quadratum. Voltarei a esse assunto importante num capítulo posterior.
O hexágono
O hexágono é uma figura geométrica natural produzida pela divisão da circunferência de um círculo por meio dos seus raios. Os pontos da circunferência são conectados por linhas retas e produzem uma figura com seis lados iguais. Sendo uma função da relação entre o raio e a circunferência do círculo, o hexágono é uma figura natural que ocorre em toda a natureza. É produzido naturalmente na fervura e na mistura de líquidos. O físico francês Bénard observou, durante as suas experiências de difusão em líquidos, que os padrões hexagonais se formavam freqüentemente em toda a superfície. Tais tourbillons cellulaires, ou "células de Bénard", foram objeto de muitos experimentos. Verificou-se que, em condições de perfeito equilíbrio, os padrões formavam hexágonos perfeitos. Esses padrões eram semelhantes aos das células que constituem a vida orgânica ou as formas prismáticas das rochas basálticas. Sujeitos às mesmas forças universais de viscosidade e de difusão, padrões similares são criados naturalmente num líquido fervente. O hexágono natural mais bem conhecido é aquele que se vê nos favos das abelhas. Esses favos são formados de uma reunião de prismas hexagonais cuja precisão é tão espantosa, que atraiu a atenção de muitos filósofos, que viam neles uma manifestação da harmonia divina na natureza. Na Antigüidade, Pappus, o Alexandrino, dedicou a sua atenção a esse esquema hexagonal e chegou àconclusão de que as abelhas eram dotadas de uma "certa intuição geométrica", com a economia como princípio orientador, pois, "existindo três figuras que podem ocupar o espaço que circunda um ponto - a saber, o triângulo, o quadrado e o hexágono -, as abelhas escolheram sabiamente como sua estrutura aquela que possui mais ângulos, suspeitando com certeza que ela poderia conter mais mel do que qualquer uma das outras duas". Em minhas próprias pesquisas sobre a estrutura dos microrganismos marinhos, encontrei o hexágono na forma externa da Pyramimonas virginica, uma alga marinha norte-americana. Nela, as bases das estruturas que cobrem o corpo do organismo formam hexágonos perfeitos, embora elas sejam menores que o comprimento da onda da luz visível. Essa geometria natural sobre a qual o autor romano Plínio nos conta que os homens fizeram do seu estudo o trabalho de toda uma vida em sua época, é de interesse especial para o geômetra místico.
A relação direta do hexágono com o círculo está ligada a uma outra propriedade interessante segundo a qual os vértices alternados dessa figura podem ser conectados por linhas retas para a produção do hexagrama. Essa figura, composta de triângulos eqüiláteros que se interpenetram, simboliza a fusão dos princípios opostos masculino e feminino, quente e frio, água e fogo, terra e ar, etc. e é, por conseguinte, símbolo da inteireza arquetípica, o poder divino da criação. Assim, foi usada na alquimia e continua sendo o símbolo sagrado dos judeus ainda em nossos dias. As dimensões dos triângulos que formam o hexagrama estão diretamente relacionadas ao círculo que as produz e podem ser o ponto de partida para desenvolvimentos geométricos.
O vesica piscis, o triângulo e os sólidos platônicos
O vesica piscis é aquela figura que se produz quando dois círculos de igual tamanho são desenhados, um a partir do centro do outro. Em termos geométricos sagrados, trata-se do ponto de derivação do triângulo eqüilátero e da linha reta que parte do círculo. Representou os órgãos genitais da Deusa Mãe, o ponto físico de origem da vida simbolizada por sua posição fundamental na geometria. Por essa razão, ocupou uma posição privilegiada na construção de edifícios sagrados. Dos círculos de pedra e dos templos mais antigos até as catedrais do período medieval, o ato inicial da construção foi relacionado ao nascer-do-sol de um dia predeterminado. Esse nascimento simbólico do templo com o novo sol é um tema universal e sua conexão com o vesica de forma genital não é mero acidente. A geometria do templo hindu, como as das suas contrapartidas espirituais da Ásia Menor, da África Setentrional ou da Europa, está registrada como sendo diretamente derivada da sombra de um poste ou gnomon. O Manasara Shilpa Shastra, um antigo texto sânscrito sobre construção de templos, detalha a derivação do plano a partir da orientação. Escolhido o sítio por um praticante de geomancia, um poste era cravado no chão naquele local. Um círculo era desenhado ao seu redor. Esse procedimento produz um eixo leste-oeste verdadeiro. De cada ponta desse eixo, desenhavam-se arcos, produzindo-se então um vesica piscis que, por sua vez, fornecia um eixo norte-sul. Assim, o vesica universal era fundamental para a construção do templo. Com base nesse vesica inicial, desenhava-se um outro a partir do ângulo reto e, com base nele, um círculo central e depois um quadrado dirigido para os quatro quartos da terra. O sistema hindu de construção pode ser considerado fundamentalmente idêntico ao utilizado no método romano de construção de cidades e descrito nas obras de Vitrúvio. É produzido por observação direta e, assim, reproduz as condições predominantes no momento exato da fundação. Essa fixação no tempo, como o momento do nascimento na astrologia, é fundamental em todas as práticas de orientação, exatamente como um alinhamento incorporaria automaticamente os atributos astronômicos e astrológicos do tempo. Além disso, as características geomânticas do local, que lhe conferem uma feição única, são incorporadas ao templo. O vesica não está envolvido na construção por princípios arbitrários. Ele é o ponto prático de partida do qual derivam todas as outras figuras geométricas. Dividindo-se o vesica com uma linha que passa pelos centros dos dois círculos, unindo-se os seus vértices comuns e, para um lado e para o outro, ligando-se esses vértices aos pontos em que a linha vertical cruza os círculos, obtêm-se dois triângulos eqüiláteros. Os lados desses triângulos são de comprimento igual ao raio do círculo gerador. Com base no triângulo eqüilátero, pode-se produzir facilmente o hexágono e o icosaedro. Em termos esotéricos, toda a série de sólidos geométricos regulares conhecida universalmente como Sólidos Platônicos pode ser produzida a partir de figuras planas. No Timeu, Platão escreveu: "Ora, a figura [triângulo] que tenho dito ser a mais bela de todos os muitos triângulos (não é ne o cessário falar dos outros) é aquela cujo duplo forma um terceiro triângulo que é eqüilátero (...) escolhamos então dois triângulos, com que foram construídos o fogo e outros elementos, um isósceles, tendo o outro o quadrado do lado maior igual a três vezes o quadrado do lado menor". No sistema de Pia tão, o simbolismo geométrico encarrega-se de registrar todos os estados conhecidos da matéria. Especialmente importante era a série de figuras sólidas que era a essência da sua filosofia. Por meios ocultos, toda a série era simbolizada numa figura agora ostentada pelos franco-maçons do grau do Santo Arco Real. Esse símbolo é o triângulo eqüilátero circunscrito num hexagrama. "Analisa"-se seu simbolismo somando-se os valores dos ângulos produzidos pelas várias partes e dividindo-se por tantos ângulos retos que tiverem igual valor. Esse método arcano possibilita que qualquer figura geométrica seja "analisada" e, assim, impregna a sua simplicidade com um rico simbolismo que foi explorado a fundo pelos arquitetos de construções sagradas. O triângulo eqüilátero determinado dentro do tetraedro é igual em valor geométrico aos oito ângulos retos - o número de graus em quatro triângulos eqüiláteros. Em virtude de ser o menor sólido geométrico regular e por causa da sua forma piramidal, foi utilizado pelos platônicos para representar o elemento fogo.
Os triângulos "determinados" no hexagrama ou Sigilo de Salomão, sem levar em consideração as intersecções (que convencionalmente são mais entrelaçamentos do que junções), são equivalentes a dezesseis ângulos retos. Este é o número contido no octaedro, o sólido platônico composto de oito triângulos eqüiláteros de lados iguais. Ele foi atribuído pelos platônicos ao elemento ar, o mais próximo do tetraedro em leveza.
Ignorando-se as intersecções, à Sigilo de Salomão, com seu triângulo menor superposto, se igualará ao número de graus dos 24 ângulos. Este é o número que está no cubo, um sólido composto de seis quadrados iguais. Essa figura sólida e fixa simbolizava para os platônicos o elemento terra. Ele representou universalmente esse elemento onde quer que ele ocorresse na geometria sagrada - a base quadrangular do templo e da Cidade Sagrada, plantada fixamente sobre o omphalos. O triângulo invertido do sigilo, com o triângulo menor circunscrito, somado ao triângulo maior do hexagrama voltado para cima, perfaz quarenta ângulos retos, iguais em graus àqueles que estão no icosaedro, um regular formado por vinte triângulos eqüiláteros de lados iguais. Este é o sólido regular mais pesado formado por triângulos. Próximo ao cubo em peso, o icosaedro representou o elemento água. Assim, considera-se que toda forma que derivou do hexagrama, com seu triângulo interno, incorpora todos os sólidos platônicos e, por associação, os quatro elementos - um atributo da universalidade e um símbolo da lei da unidade dos opostos.
A Seção Dourada
A Seção Dourada é uma razão que foi usada na artesania sofisticada e na arquitetura sagrada do Egito antigo. No antigo Egito e na Grécia, ocorreu um uso extensivo daquilo que Jay Hambidge, geômetra do início do século X, chamou de "simetria dinâmica". Os objetos e os edifícios sagrados egípcios e gregos possuem geometrias baseadas na divisão do espaço conseguida pelos retângulos de raiz e seus derivados. Os retângulos de raiz são produzidos diretamente do quadrado por simples desenho com um compasso e, assim, fazem parte da geometria clássica, produzida sem medição. Existe toda uma série de retângulos de raiz. O primeiro dos retângulos de raiz é o quadrado, que é um retângulo "de raiz 1". O seguinte, o retângulo V2, é produzido a partir do quadrado por meio do simples expediente de se colocar o compasso no comprimento da diagonal e fazer a linha de base encontrar a linha traçada a partir daquele vértice. Esse procedimento torna o comprimento do lado longo igual à raiz quadrada de 2, tomando-se o lado curto como unidade. O retângulo V3 é produzido a partir da diagonal desse retângulo, e assim por diante. Embora os lados desses retângulos não sejam medidos em termos de número, os gregos diziam que essas linhas não eram irracionais porque eram mensuráveis em termos dos quadrados produzidos por elas. A mensurabilidade em termos da área do quadrado, em vez do comprimento, era o grande segredo da antiga geometria sagrada grega. O famoso teorema de Pitágoras, conhecido de todo escolar, só é compreensível em termos da medida do quadrado. Por exemplo, a relação entre o final e o lado de um retângulo V5 é uma relação de área porque o quadrado construído ao final de um retângulo V5 é exatamente um quinto da área de um quadrado construído sobre seu lado. Tais retângulos possuem a propriedade de serem divididos em formas muito menores que também são partes mensuráveis do todo.
Isto nos leva a um outro fator fundamental no desenho da arquitetura sagrada: a proporção e a sua irmã siamesa, a comensurabilidade. A música o demonstra admiravelmente em suas harmonias e, com efeito, já se disse que a música é na realidade a geometria traduzida em som, pois na música pode-se ouvir as mesmas harmonias que sustentam a proporção arquitetônica. A comensurabilidade, que garante harmonia completa em toda a construção ou obra de arte, é uma integração racional de todas as proporções de todas as partes
2
de uma construção de maneira que toda parte tenha forma e tamanho absolutamente fixos. Nada pode ser acrescentado ou removido desse conjunto harmonioso sem romper a harmonia do todo. Certos retângulos, que são o ponto de partida para figuras geométricas relacionadas, geralmente constituem as bases de tais padrões harmonizadores. Retângulos que possuem as razões lado: lado iguais a 3:2, 5:4, 13:6, etc., em que as proporções são expressas em números inteiros, têm recebido o nome de retângulos estáticos. Retângulos do tipo dos retângulos de raiz têm sido chamados de retângulos dinâmicos. Esses últimos são mais encontradiços na composição geométrica. Eles permitem uma flexibilidade muito maior de uso do que os retângulos estáticos, especialmente quando são usados para se estabelecer a harmonia dos elementos pela proporção. Há alguns retângulos que combinam as características dos retângulos estáticos e dinâmicos. São o quadrado e o quadrado duplo (1 = 1:1 = V1:1 e 2 = 2:1 = V4:1). A diagonal do quadrado duplo, que talvez seja a forma mais favorecida pelos edifícios sagrados, é V5. Esse número irracional relaciona diretamente o retângulo de raiz 2 ou de raiz 4 ao retângulo de raiz 5, que está diretamente relacionado a proporção V5 + 1da seção dourada.
Essa importante razão, chamada de Seção pelos gregos antigos, de Proporção Divina por Luca Pacioli (1509) e de Seção Dourada por Leonardo e seus seguidores, tem propriedades únicas que a recomendaram aos geômetras desde os tempos egípcios. A Seção Dourada existe entre duas quantidades mensuráveis de qualquer espécie quando a razão entre a maior e a menor é igual à razão entre a soma das duas e a maior delas. Em termos geométricos, ela pode ser facilmente produzida a partir do quadrado
2
duplo. Se um dos dois quadrados for cortado ao meio e a diagonal dessa metade for levada para baixo em direção à base, o lugar em que ela corta a base representará 1,618 unidades em relação ao lado do quadrado que tem unidade 1 de comprimento. A razão também pode ser produzida a partir do pentagrama e está associada ao pentágono, quando então a razão entre o lado do pentágono e a sua extensão para o pentagrama obedece à equação V5 + 1 = 1,618...
Na convenção geométrica grega, isto está simbolizado pela letra grega (I). Numericamente, possui propriedades algébricas, matemáticas e geométricas excepcionais. (I) = 1,618; (I) = 0,618 e (I) 2 = 2,618. Em toda progressão ou série crescente de termos que tem como a razão entre os termos que se sucedem, cada termo é igual à soma dos dois precedentes. Esta propriedade singular permite a manipu lação de toda a série. Todos os outros termos sucessivos podem ser construídos, a partir de dois deles, por movimentos simples do compasso. Em termos numéricos, essa série aditiva foi popularizada peja primeira vez na Europa por Leonardo Bigollo Fibonacci, conhecido como Leonardo da Pisa. Nascido em 1179, Leonardo viajou com seu pai para Algiers, onde aprendeu, com os geômetras árabes, o segredo da série e por essa razão pôde introduzir os números arábicos na Europa. Ambos os conceitos revolucionaram a matemática européia. Esta série numérica, conhecida agora pelo nome de Série Fibonacci, foi há muito tempo reconhecida como um princípio que ocorre na estrutura dos organismos vivos e, por conseguinte, um princípio inerente à estrutura do mundo. Sua construção é enganosamente fácil: o termo seguinte é a soma dos dois termos anteriores, isto é, 1, 2, 3, 5, 8, 13, 21, 34, 5, 89, 144, e assim por diante. O arranjo das folhas de um vegetal, os hipotênares da pata do gato e as espirais das conchas formainíferas microscópicas são governados peja Série Fibonacci. A Seção Dourada tem sido reverenciada através de toda a história. Platão, em seu Timeu, discutiu-a como a chave da física do Cosmos. Luca Pacioli, geômetra renascentista, publicou sua influente obra De Divina Proportione em Veneza em 1509 e até mesmo o arquiteto moderno Le Corbusier, pai dos grupos de prédios, planejou um sistema modular de proporção baseado nessa antiga mas poderosa razão.
3. A Geometria Britânica Antiga
"As estruturas sagradas e culturais pró-cristãs só podem ser compreendidas se se adotar o ponto de vista dos antigos. Para eles, todas as coisas mundanas estavam vinculadas às coisas divinas.
Todos os pensamentos e todas as ações humanas estavam subordinados às influências energizantes das forças divinas onipotentes. Sua filosofia e sua sabedoria culminaram no conhecimento de que como o acima, assim também o abaixo e na tentativa de harmonizar todas as suas atividades e ambições com a natureza superior, a Vontade Divina.” Josef Heinsch.
Espalhados por todas as Ilhas Britânicas e por toda a Europa Setentrional estão os últimos remanescentes de uma cultura perdida há muito tempo: as pedras eretas. Lembranças grosseiras de uma era quase inimaginavelmente distante, os megalitos da Europa ainda sobrevivem em número considerável. Apesar de talvez a maior parte deles ter desaparecido nos 3.0-5.0 anos que se passaram desde que foram erigidos, muitos sítios ainda sobrevivem virtualmente intactos.. Alguns desses megalitos enigmáticos são solitários e desbastados; outros estão arranjados em formações complexas. Mas há outros que foram enfeitados e apresentam entalhes tanto figurativos quanto abstratos. Alguns dos entalhes mais arcaicos e enigmáticos que foram executados sobre rochas e que sobrevivem até hoje são os sinais. de cálices e de anéis que podem ser encontrados nas pedras eretas e, menos comumente, nos afloramentos naturais de rochas. Durante muitas centenas de anos, esses entalhes foram fontes de lenda, objeto de veneração para os supersticiosos e motivo de comentário e de especulação para os antiquários locais. Muitos comentadores eruditos aventuraram-se em discutir sobre sua função e seu significado, que ainda continuam a ser um quebra-cabeças a ser resolvido no campo da pesquisa pré-histórica. Seus desenhos são variados, repetindo-se raramente, espalhados sobre a pedra sem qualquer ordem óbvia. Os sinais de cálices e de anéis consistem de pequenas depressões semelhantes a cálices, geralmente circulares, mas assumem ocasionalmente uma forma oval. Freqüentemente esses "cálices" estão cercados por anéis concêntricos. Às vezes são excêntricos ou aneliformes. Variam em número e podem ser associados a linhas radicais que atravessam completamente os anéis e às vezes ligam o sistema cálice-anel a um outro sistema, situado numa parte diferente da superfície da rocha. As espirais são raras, como também os entalhes que lembram escadas. Na Irlanda, são comuns os desenhos que semelham estrelas ou sóis redondos com linhas que delas saem imitando raios. Estes últimos correspondem a alguns dos hieroglifos dos antigos traços escandinavos executados sobre rochas conhecidos como hällristningar, que foram os precursores dos caracteres rúnicos. Embora esses petroglifos se estendam desde a Europa até a Ásia, variações locais são amiúde suficientes para distinguir as marcas de uma localidade das de outra. Inúmeras conjecturas foram feitas no sentido de se compreender o significado dos sinais de cálices e de anéis. Os autores os classificaram como marcadores territoriais tribais, mapas de aldeias préhistóricas com suas estradas, "árvores" genealógicas, uma espécie de escrita indecifrada, canais para o sangue sacrificial, mapas das posições das pedras eretas ou casas figurativas dos mortos.
Um dos poucos estudos sistemáticos do significado desses sinais inescrutáveis foi executado pelo antiquário escocês Ludovic MacLeIlan Mann, um pesquisador independente cuja obra hoje pouco se conhece. Em 1915, publicou Archaic Sculpturings, em que confrontou os resultados de um grande número de anos de pesquisa dos entalhes em rocha. Após a análise, MacLellan Mann chegou à conclusão de que os sinais de cálices e de anéis faziam parte de um sistema coerente. Ein Archaic Sculpturings, MacLellan Mann escreveu:
"Alguns anos atrás (...) comecei a fazer um exame dos muitos grupos desses sinais e, para meu espanto, descobri que, em vez de os sinais terem sido feitos a esmo, eles estavam arranjados da maneira mais precisa, matemática e geométrica. (...) Embora essas esculturas ofereçam tipos marcadamente di. ferentes. elas foram executadas em obediência às mesmas idéias e segundo o mesmo sistema. Observei que as linhas retas podem ser desenhadas em determinadas partes, tais como ao longo dos conjuntos de canaletas freqüentemente metódicas ou através dos centros de três ou mais cálices ou conjuntos aneliformes. Quando executadas, estas linhas tinham de convergir precisamente para os pontos focais comuns situados além do campo das esculturas. (...) Ao redor de cada um desses focos deveria estar um conjunto de zonas concêntricas, muitas das quais conformam as partes principais ou essenciais da obra esculpida tão exata e tão freqüentemente, a ponto de apontarem para algum fator que não é o acaso, o acidente ou a coincidência.”
A análise de Mann da geometria subjacente que ele descobriu nas marcas de cálices e de anéis foi interpretada em termos astronômicos. Há dois centros principais que determinavam os sinais pelas zonas radiais e concêntncas geradas a partir deles. Um centro, Mac Lellan Mann acreditava, era freqfientemente cortado por uma linha que representava uma linha norte-sul exata, e pelo outro centro passava uma segunda linha norte-sul a quatro graus numa direção divergente. Assim, dois sistemas complementares de linhas encaixavam-se nas partes salientes dos talhes. Um relacionava-se ao norte terrestre - o pólo atual do planeta terra -, ao passo que o outro era determinado pela posição da estrela polar ou norte magnético. MacLellan Mann acreditava que sua grande radial, dentro da qual eram feitos os entalhes, era um sistema de referência que mostrava as posições dos corpos celestes em determinados momentos do ano. Esses entalhes astronômicos foram encontrados em todo o continente. Datando de mais de 30.0 anos, foram elaborados por sociedades iletradas, mas não pré-astronômicas. Os fatos de astronomia foram lentamente acumulados durante séculos de observação direta e registro, uma técnica que não envolveu a utilização da escrita, tal como a conhecemos hoje. Os segredos da astronomia eram desvendados por ensaio e erro e pelo expediente da observação das estrelas. Tendo desenvolvido a função de elaboração de calendários, e daí a de registrar a atividade celestial, os sacerdócios antigos que organizaram tais assuntos precisavam de algum método para determinar o tempo preciso Ido ano para a realização de cada uma das suas observâncias práticas e rituais. A necessidade fundamental de determinar os tempos precisos em que os ritos mágicos ou religiosos deveriam ser cumpridos é demonstrada nos dias atuais pelos rituais da tribo norte-americana dos hopi. Em determinadas épocas do ano, os sacerdotes e os membros das sociedades religiosas descem para os seus kivas (santuários subterrâneos) e observam as estrelas pela entrada vertical. Várias canções apropriadas e alguns gestos são executados durante o tempo em que as constelações importantes passam por sobre a entrada. A duração de toda a cerimônia é, assim, determinada pela passagem das estrelas. Dessa maneira, os ritos são harmonizados por observação direta com as condições- astronômicas e astrológicas predominantes. Algo similar deve ter sido a motivação daqueles que construíram os observatórios megalíticos da Europa. A única maneira de fazê-Io era construir pontos de observação que medissem e definissem precisamente a passagem do tempo. Essa necessidade levou à descoberta de que os cicIos de ascensão e de decIínio do sol, da lua e das estrelas não estão sujeitos a leis simples. Esse despertar gradual na compreensão reflete-se nos restos da cultura megalítica da Grã-Bretanha, onde a arqueologia mostrou que os observatórios de pedra e de madeira foram reconstruídos a intervalos. Cada reconstrução incorporava incrementos progressivos em complexidade e sofisticação. A construção de observatórios cada vez mais complexos andava de mãos dadas com a invenção e o emprego de geometrias também cada vez mais complexas. Conhecimento considerável e destreza eram exigidos para o desenhó, o planejamento e a construção de um empreendimento tal como o de Stonehenge. Encontrar o sítio correto para a observação dos fenômenos celestes e a colocação ali de enormes pedras eretas que marcavam exatamente a passagem dos corpos celestiais exigia uma ciência exata da geometria aplicada.
MacLellan Mann descobriu que ela existiu realmente A geometria subjacente que ele detectou nos sinais de cálices e de anéis também poderia ser descoberta numa escala muito maior. "O arquiteto neolítico tardio", escreveu MacLellan Mann em Archaic Sculpturings, "quando projetava, por exemplo, a planta baixa dos montes de pedra de Caithness, possuía essas mesmas noções curiosas.
Estudei cuidadosamente as suas plantas baixas e elas mostram, exatamente como os cortes das rochas, o arco do círculo representado pelas estruturas laterais e a curva de uma elipse em cada final do monumento (...) os grupos aparentemente isolados, os grupos de pedras eretas muito distantes umas das outras e os conjuntos de en talhes de rochas destacados uns dos outros podem fazer parte de um desenho mais amplo". Em 1937, durante escavações para obtenção de areia perto de Knappers, a sete milhas da cidade de Glasgow, foram descobertos os remanescentes de um antigo templo de madeira. Esses restos chamaram a atenção de MacLellan Mann. Ele os analisou, e também a paliçada serpentina a ele associada, e descobriu que seu desenho era comparável em escala maciça aos sinais de cálices e de anéis que havia estudado. Em The Druid’s Temple near Glasgow, publicado em 1937, MacLellan Mann escreveu: "O esboço da área é sistemático e exato. Interpretando-se as dimensões lineares e angulares em períodos astronômicos recorrentes, cada figura de serpente pode ser identificada, a partir do comprimento de sua linha medial, com um ou outro dos corpos celestes - o Sol, a Lua e os cinco planetas -, ou com o espírito do mal do Ano do Eclipse. As várias paliçadas circulares parecem representar os períodos astronômicos principais, tais como o ciclo luni-solar de 19 anos ou o Ciclo Saras de 18 anos de 10 1/2 dias, ao final dos quais podem ocorrer os eclipses".
O "Templo dos Druidas" foi objeto de um grande interesse, mas o advento da Segunda Guerra Mundial impediu qualquer preservação. Na época de MacLellan Mann, todavia, por causa da falta de recursos, pesquisas acuradas e análises de estruturas antigas não foram efetivadas em número muito grande. Até os estudos do Professor Thom, que o envolveram pessoalmente na pesquisa de centenas de sítios megalíticos nas llhas Britânicas e na Bretanha, sentimentos como aqueles expressos por MacLellan Mann podiam ser rejeitados pelas mentes conservadoras como fantasistas. As formas excêntricas, visíveis na maioria dos "círculos" de pedras, eram geralmente atribuídas à incompetência dos seus construtores, que eram vistos, pelos cientistas da escola vitoriana, como selvagens de parco intelecto, muito pouco superiores aos macacos. O bom senso nos diz, entretanto, que técnicos que podiam transportar enormes pedras por distâncias consideráv'eis (por exemplo, o arenito cinzento de Mynydd Preseli, em Gales, levado para Stonehenge) achariam fácil demais traçar um círculo verdadeiro. Todavia, as geometrias exigidas para a construção de observatórios para o estudo e a documentação dos fenômenos variáveis dos céus são muito mais complexas do que o traçar um simples círculo. Assim, formas mais complexas foram utilizadas. Os grandes conjuntos megalíticos da Grã-Bretanha antiga, e certamente os círculos menores de pedras que pontilham as charnecas e as regiões inabitadas do país, foram conclusivamente demonstrados pelo Professor Thom terem sido planejados com precisão espantosa. Essa geometria exata envolveu o uso de triângulos retos integrais (triângulos "pitagóricos") executados com uma medida constante notável - 82,90 cm -, que Thom denominou de jarda megalítica (JM). Os círculos de pedra excêntricos, longe de serem sintomáticos da falha técnica dos seus construtores, foram construídos de acordo com regras básicas específicas, baseadas em triângulos integrais. Os "círculos" Tipo 1 de Thom são de fato anéis em forma de óvo, baseados em dois triângulos retos 3:4:5 colocados um contra o outro. Outro "círculo" comum, o Tipo 2, também é baseado em dois triângulos 3:4:5, mas desta vez com uma hipotenusa comum. Outro, de organização mais complexa, segundo Thom, era produzido a partir de outros triângulos retos integrais tais como 5:12: 13 ou 8:15:17. Stonehenge é um amálgama complexo de círculos e elipses perfeitas e também pode ser analisado em termos de geometria convencional. As pesquisas de MacLelÍan Mann e as descobertas complemen tares posteriores de Thom de linhas de visão do horizonte a partir de círculos de pedras ou de outras marcas com a intenção de observação celestial e registro mostram o estágio seguinte do desenvolvimento do microcósmico para o macrocósmico, No começo deste século, Boyle Somerville e Sir Norman Lockyer haviam notado esses alinhamentos, mas, até os estudos exaustivos de Thom, eles não haviam passado de boas hipóteses.
Lockyer é mais bem conhecido por seu trabalho em Stonehenge e seus arredores, o distrito posteriormente estudado pela escola alemã de pesquisa geomântica. Durante as suas investigações, descobriu que a tão conhecida linha do nascer-do-sol do alto verão, que é marcada em Stonehenge pela famosa Pedra do Calcanhar, era apenas parte de um alinhamento maior de sítios antigos. Pesquisando a avenida que marca a posição do nascer-da-sol no dia mais longo do ano, quando contemplada do centro do círculo,
Lockyer notou que ela se alinhava com a terraplenagem antiga de Sidbury HilI. Quando prolongada na direção oposta, essa linha se alinhava com Grbvely CastIe e com Castle Ditches, também terraplenagens antigas. Esse alinhamento fora notado anteriormente pelo Coronel Johnstone, então Diretor Geral de Reconhecimento da Artilharia. A linha fora utilizada num reconhecimento aperfeiçoado do distrito, que levou a um aumento da exatidão dos mapas de Reconhecimento da Artilharia. A seção entre Grovely Castle e Stonehenge, que tem aproximadamente seis milhas de extensão, pareceu a Lockyer formar um dos lados de um triângulo eqüilátero cujo ápice está no sítio da antiga cidade de Old Sarum, também uma terraplenagem antiga. Old Sarum está no alinhamento Stonehenge-Old Sarum-Salisbury CatedralClearbury Ring-Frankenbury. Assim, o esboço de Stonehenge, cuja geometria foi desenhada segundo fatores celestiais, está integrado com a geometria da paisagem artificial do país, de acordo com as posições de outras terraplenagens antigas, e é definido por suas localizações e as define. Stonehenge combina muitas geometrias num esquema magistral. Relacionada a fenômenos celestes e ao território vizinho, está situada num ponto geomântico chave em relação à geometria de toda a paisagem da Inglaterra meridional. O henge está situado sobre muitas linhas ley importantes, incluindo uma que parte da torre da igreja de St. Michael, que está no alto de Glastonbury Tor. Este ley, que vai de Glastonbury Tor até um túmulo situado em Deerleap Wood, perto de Dorking, no Surrey, passando por St Michael, Gare Hill, Maiden Bradley Priory, Stonehenge e Shere Church, é, como a linha do pôr-do-sol em Stonehenge, uma extensão do lado de uma figura geométrica de vastas dimensões. Nesse caso, é a extensão do lado de um decágono que liga pontos geomânticos vitais aos de um outro.
A geometria do henge, em si mesma, baseada no eixo solsticial, apresenta uma tendência à divisão sêxtupla. Este fato foi percebido desde a época de Inigo Jones (1652) e evocou comentários de místicos do porte de John Wood, Hermon Gaylard Wood e John Michell. A descoberta de Lockyer de um triângulo eqüilátero com lados que medem seis milhas liga a geometria sagrada sêxtupla microcósmica à geometria da paisagem macrocósmica. Lockyer, todavia, foi apenas um numa longa linha de pesquisadores que estudaram o alinhamento de sítios antigos. Entre 1870 e 1872, um perito em estradas romanas chamado William Henry Black tornou pública uma teoria surpreendente. Ele persistiu em seus estudos por cinqüenta anos antes de liberar os seus resultados a um público insensível e incrédulo. Black pretendia ter descoberto nada menos do que todo um sistema de "grandes linhas geométricas", radiais e poligonais, que cruzavam toda a Grã-Bretanha e avançavam para além dela. Elas ligavam de maneira precisa os maiores marcos de fronteiras, chegando a definir inclusive os marcos limítrofes dos municípios. Anteriormente, esse conceito nunca fora corrente. Além de uma referência que se encontra num obscuro livro ocultista publicado em 1846 - feita em relação a uma linha de terraplenagens antigas em Wiltshire -, até mesmo os alinhamentos não haviam recebido apoio algum. Blafk morreu em 1872, mas nenhum sucessor chegou a elabora! ou mesmo corroborar suas descobertas. Todavia, ele não deixou de exercer influências. Seu maior comentário sobre as "grandes linhas geométricas" foi feito em Hereford em 1870 durante uma viagem de campo da Associação Arqueológica Britânica. O encontro em que Black fez sua exposição foi presidido por uma personalidade local, o Dr. BulI, do Clube dos
Naturalistas de Woollhope. Nos anos que se seguiram à morte de Black, Bull mencionou a sua obra em muitas ocasiões. A um desses encontros estava presente um moleiro e pioneiro fotográfico interessado em antigüidades - Alfred Watkins. Cinqüenta anos após Black ter falado em Hereford, Watkins anunciou que fizera uma descoberta momentosa - alinhamentos de sítios antigos, aos quais deu o nome de "leys". Watkins, como Black e outros antes dele, descobriram que as terraplenagens antigas, os marcos fronteiriços, as igrejas e outras espécies de monumentos antigos estavam arranjados em linhas retas. Com seus livros Early British Trackways, The Old Straight Track e Archaic Tracks Around Cambridge, Watkins tornou-se o expoente mais conhecido dos sítios alinhados, o pai dos "caçadores de ley", como são conhecidos os seus seguidores. Diferentemente de Black, que ensinava que as suas "grandes linhas geométricas" eram os remanescentes de uma inspeção antiga, Watkins considerava que os seus alinhamentos eram os resíduos de uma antiga rede de veredas. Watkins apenas arranhou a superfície dos alinhamentos orientados e nem chegou a tocar o relacionamento dos centros radiais com a geometria. Isto parece estranho, pois Watkins certamente ouvira falar de Black e deve ter conhecido a obra de MacLellan Mann, que mencionara "pedras (...) num relacionamento geométrico exato". De qualquer forma, Watkins dedicou o resto de sua vida a disseminar as suas idéias sobre os alinhamentos. Embora tenha morrido em 1935, foi só nos últimos quinze anos que sua obra tornou-se conhecida e estudos baseados nela, especialmente os de Paul Devereux e Ian Thomson, verificaràm muitas das suas descobertas. Watkins e a sua escola ignoravam em grande medida a obra de Lockyer, que exercera mais impacto na Alemanha do que em sua nativa Grã-Bretanha. Pouco tempo após a publicação de seu livro Stonehenge and Other British Stone Monuments Astronomically
Considered (1909), um pesquisador alemão chamado Albrecht publicou uma discussão sobre o significado astronômico de Stonehenge no periódico Das Weltall (O Universo). A sua fonte inicial foi Lockyer. Pouco tempo depois, Albrecht foi morto na Primeira Guerra Mundial, mas, em 1920, o Padre Leugering leu seu livro e começou a procurar sistemas similares na Vestfália, onde nascera. A derrotada Alemanha dos anos 1920 era um terreno fértil para os sentimentos revolucionários e chovinistas e os estudiosos da "geografia sagrada", como se dizia então, encontraram seu refúgio. O colaborador de Leugering, Josef Heinsch, advogado e projetista regional, descobriu alinhamentos do tipo dos de Stonehenge por toda a Alemanha. Em suas pesquisas, estudou a geografia sagrada e seu aspecto microcósmico, a geometria sagrada, que demonstrou serem dois aspectos da mesma disciplina geomântica. O paladino principal da cultura germânica antiga foi Wilhelm Teudt, que, mais que todos os outros, devia tornar-se a figura de proa da ciência da geometria da paisagem. Em seu grande livro Germanische Heiligtümer (Santuários alemães antigos), publicado em 1929, anunciou a sua descoberta de alinhamentos aos quais denominou heilige linien (linhas sagradas). Estas, segundo ele, baseavam-se em fenômenos astronômicos. Na Teutoburger Wald, floresta que é o coração místico da Alemanha, sítio de muitas façanhas legendárias e heróicas, Teudt estudou as orientações das terraplenagens hexagonais irregulares de Haus Gierke, em Oesterholz. Essas terraplenagens estavam situadas ao redor de uma cabana de caça do século XVII, mas Teudt pretendja que as terraplenagens fossem os resíduos de um antigo observatório astronômico. As orientações das terraplenagens foram testadas por astrônomos profissionais, que descobriram que elas' foram alinhadas em suas posições, segundo muitas características astronômicas, em 1800 a.C. Heinsch tomou a liberdade de discordar, afirmando que as formas das terraplenagens, embora antigas, estavam determinadas pela geometria sagrada. As heilige linien de Teudt, que ligavam sítios significativos, embora fossem primordialmente astronômicas, eram similares em conceito às linhas geométricas de Black e às leys de Watkins. A partir de uma terraplenagem qualquer mais antiga, Teudt descobriu que deveria existir pelo menos uma marca de orientação na forma de uma "torre de relógio" situada ao longo do eixo norte-sul ou leste-oeste. As linhas ligavam sítios sagrados em relações geométricas significativas, estando elas próprias ligadas a fenômenos astronômicos. No final dos anos 1930, a obra de Teudt e de seus colegas foi retomada por alguns nazistas e a ela foi propiciado um apoio oficial que possibilitou que os pesquisadores produzissem um amplo conjunto de material sobre a geometria da paisagem. Josef Heinsch descobriu um vasto sistema interligado de alinhamentos e de figuras geométricas com distâncias e ângulos significativos que cobriam seções amplas do vale do Reno. Como os pesquisadores geomânticos anteriores, descobriu que a geometria da paisagem era freqüentemente uma versão ampliada da geometria de sítios individuais, estabelecendo um vínculo físico entre o microcosmo e o macrocosmo. Heinsch viu a sua descoberta como "um templo sagrado indestrutível da natureza", que era o continuum da geometria sagrada em círculos e templos de pedras sem o esboço da paisagem.
Com a destruição da Alemanha nazista, todas as pesquisas geomânticas alemãs cessaram. A obra de Teudt e dos seus seguidores foi esquecida, até que os pesquisadores geomânticos ingleses a redescobriram nos anos 1970. Muito da obra de Heinsch e de seus colegas tem saído agora em tradução inglesa e se transformou nos dados mais detalhados e mais convincentes coletados até agora. Uma nova geração de pesquisadores está agora estudando a geometria da paisagem. Em seu livro City of Revelation, John MichelI revelou a existência de uma grande figura geométrica na Grã- Bretanha meridional. Os três antigos "coros perpétuos" celtas de Llantwit Major, Glastonbury Abbey e Stonehenge, segundo esse pesquisador, formam três vértices de um decágono regular de proporções majestosas. Existe um quarto vértice em Goring-on- Thames, onde havia antes um grande templo pagão na junção de muitas veredas importantes. O centro desse vasto decágono está na aldeia de Whiteleaved Oak, na qual se reuniam os antigos municípios de Hereford, Gloucester e Worcester. Esse decágono relaciona-se em ângulos e em distância a outros centros geomânticos da Grã-Bretanha, sobre os quais muito se tem escrito ultimamente. Os pesquisadores, de Black a Michell, encontraram os padrões antigos fixados ,indelevelmente na paisagem. As linhas que ziguezagueiam pelo país têm obviamente a mesma antigüidade dos círculos de pedra, mas as igrejas cristãs mais modernas e as granjas podem ser invariavelmente enquadradas no mesmo modelo. Todas essas descobertas - tanto na escala das gravações em pedra e nos círculos feitos com esse material quanto através de toda a extensão da paisagem - apontam para a existência de uma civilização mais antiga, agora completamente desaparecida, cuja tecnologia espiritual da geometria não foi superada. Sua importância pode ser avaliada pela sobrevivência de seu conhecimento nas escolas de mistério da Idade Média. Podemos, assim, traçar uma linha progressiva em que as primitivas gravações em rocha de antigüidade inimaginável levam, com a astronomia, à construção de observatórios de pedra complexos e sofisticados que também estavam ligados a uma matriz geométrica mais ampla. Por imposição da religião cristã, esses sítios foram freqüentemente apropriados pelas igrejas. Todavia, as orientações e as posições foram preservadas e a geometria estava diretamente relacionada à estrutura antiga. O Professor Lyle Borst demonstrou em seu livro Megalithic Software que os padrões geométricos que subjazem às capelas orientais das catedrais de Wells, Lincoln, Canterbury, Gloucester, Winchester e de muitos outros lugares derivaram da geometria megalítica exposta por Thom e, portanto, indicam a presença naqueles locais de círculos de pedras. Nos casos das catedrais góticas e românicas, os geômetras fizeram uma síntese da geometria megalítica antiga com o ad triangulum e o ad quadratum maçônicos. A geometria dos céus, traduzida na pedra, foi novamente transmutada para o serviço de outros deuses, mas permanece até hoje reconhecível para aqueles que sabem o que devem buscar.
4. A Geometria Sagrada Egípcia Antiga
ângulo retoEste era conseguido por intermédio da divisão de uma
Geometria significa literalmente "medição da terra" e seu desenvolvimento no Egito antigo deveu-se precisamente a esse objetivo. Numa data muito recuada no tempo, possivelmente há cinco ou seis mil anos, os egípcios desenvolveram um esquema empírico de agrimensura do solo. O esquema básico nasceu da necessidade de se evitar que o transbordamento anual do rio Nilo destruísse todas as fronteiras. Com a criação do governo centralizado, e a fim de assegurar uma taxação eqüitativa e evitar disputas, as fronteiras tinham de ser restabelecidas depois de cada inundação. Necessariamente, o método de agrimensura tinha de ser praticável e simples. Não exigia mais que dois homens e uma corda cheia de nós, além do conhecimento do chamado triângulo "pitagórico", séculos antes que Pitágoras caminhasse por este mundo. O traçado das áreas requeria um método seguro para a produção do corda em treze divisões iguais. Quatro unidades formavam um lado de um triângulo, três o outro e mais cinco constituíam a hipotenusa oposta ao ângulo reto. Esse método simples persistiu até os nossos dias e foi utilizado quando se deu início à construção de túmulos e templos. Foi a origem da histórica "cordagem do templo" e, a partir dessa técnica, era relativamente simples a tarefa de esboçar retângulos e outras figuras geométricas mais complexas. Enquanto se desenvolvia, toda a antiga cultura egípcia mesclou-se tão completamente à religião canônica, que quase todos os atos eram formalizados num ato de adoração. Os templos e a arte dos túmulos são os melhores exemplos dessa vida sagrada rigidamente organizada. Cerimônias mágicas complexas resultaram de importantes eventos de estado em que o monarca dirigente representava o papel de personificar uma divindade. No planejamento dos templos, a formação básica da geometria subjacente era executada numa complexa cerimônia simbólica. Em The Dawn of Astronomy, Sir Norman Lockyer observou que a "cordagem do templo", que o esboçava por meio de uma corda, era acompanhada de um cerimonial comparável ao da moderna deposição da pedra fundamental. Ele cita descrições do processo tomadas das inscrições murais de Edfu, Denderah e Karnak. "Ascendeu o rei", diz uma dessas inscrições, "vestido com seu colar e sua coroa emplumada; e o mundo todo o seguiu, e a majestade de Amenemhat. O ker-heb (Sumo Sacerdote) leu o texto sagrado durante o estiramento da corda de medição e da deposição da pedra fundamental no pedaço de chão escolhido para esse templo. Retirouse então sua majestade Amenemhat e o rei Usertesen a inscreveu no solo diante do povo". A corda tinha uma função dupla: fixar a orientação do templo por observação direta de um objeto celestial e também, a partir daí, esboçar por meio da geometria o padrão sagrado do próprio templo. Outra inscrição diz: "O Deus vivo, o filho magnífico de Asti, alimentado peja sublime deusa no templo, o soberano do país, estira a corda com alegria, com seu olhar voltado para o ak da constelação da Mão do Touro, estabelece a morada-templo da senhora em Denderah, como já ocorreu antes". Esta é uma referência aos dois templos da Deusa em Denderah, um consagrado a Ísis e o outro a
Hathor. Após fixarem a orientação segundo a constelação da Mão do Touro (agora conhecida como do Arado ou Ursa Maior), os cordoadores estabeleciam uma linha em ângulo reto em relação a ela por meio da criação de um triângulo 3:4:5 e, a partir dele, esboçavam todo o templo. Ao longo de toda a história registrada, a forma retangular representou o corpo do homem e, por correspondência microcósmica/ macrocósmica, os céus. Sua forma complementar, o padrão geométrico central ou radjal, igual em todas as direções e emblema do mundo material, foi admiravelmente representado no Egito pelas pirâmides. A construção das pirâmides foi levada a efeito num período relativamente curto. Embora sejam conhecidas cerca de sessenta pirâmides, as maiores e mais famosas do grupo de três situadas em Giza, perto do Cairo, têm sido, mais do que quaisquer outras, objeto de escrutínio e de especulação. Testemunhos de autores antigos, tais como o do grego Heródoto, que viveu no século V a.C., confirmam que a função primária das pirâmides era servir de sepulcro.
Os reis egípcios, que reuniam em suas pessoas as funções de sacerdote, rei e deus, esforçaram-se durante todas as suas vidas terrenas para se munirem de túmulos custosos que assegurassem a sua sobrevivência no pós-vida. Heródoto menciona brevemente o extenso período de construção da Grande Pirâmide e afirma que ela era a tumba do rei Quéops. De acordo com O historiador, foi erigida sob as ordens do rei durante a sua vida de vaidade despótica e com o intuito de perpetuar a sua memória para sempre. Quatro séculos após Heródoto, o grande historiador e geógrafo Diodoro Sículo visitou as pirâmides e nos deixou o seguinte relato: "A maior delas", escreve Diodoro. "é quadrangular, cada lado mede setecentos pés de extensão em sua base 



Nenhum comentário:

Seguidores